Advertisement


Charles Swanton, PhD, on Non–Small Cell Lung Cancer Induced by Air Pollution

ESMO Congress 2022

Advertisement

Charles Swanton, PhD, of The Francis Crick Institute, discusses a newly discovered mechanism of action for air pollution–induced non–small cell lung cancer in which particles linked to climate change appear to promote cancerous changes. The finding might pave the way for new potential approaches to lung cancer prevention and treatment (Abstract LBA1).



Transcript

Disclaimer: This video transcript has not been proofread or edited and may contain errors.
So we endeavored to understand the origins of lung cancer in never-smokers. It's been known for at least two decades that there's an association between air pollution and lung cancer incidents. But association is not the same as causation, and we set about several years ago now to understand whether or not air pollutants in the context of PM2.5, these 2.5 micron particles that derive from fossil fuel combustion, brakes, tires, etc., are actually directly causing lung cancer and attributable to lung cancer in never-smokers. So we went about this in three ways. The first way is we wanted to look at the relationship first of all between the incidents of EGFR-mutant lung cancer, a subtype of lung cancer that's commonly enriched in never-smokers, and PM2.5 levels across the planet. We looked in Public Health England data, we looked in South Korea, and we looked in Taiwan, and in each case we saw a relationship between increasing PM2.5 concentrations across the planet and increasing incidents of EGFR-mutant lung cancer. Secondly, we wanted to address the causation element. To do this, we exposed mice, where we can induce an EGFR mutation in the normal lung tissue or a KRAS mutation in the normal lung tissue. We exposed them to pollutants, that same PM2.5 pollutants from USP Reference Standards laboratory. In each of these animal models, we saw an increased frequency of tumor formation or in terms of tumor number or in terms of tumor aggressiveness, from melanomas to carcinomas. So the third question was, how does this happen? Now there are two different models of cancer initiation. There's a classical model whereby the environmental carcinogen causes a mutation and the mutation expands the first cancer cell. The problem with that model is that we know from datasets of lung cancers in never-smokers there is no environmental carcinogen signature. So if pollution is promoting lung cancer, it's doing it in a way that's independent of DNA mutations. So we set about to understand what that process is, and the process we uncovered results in release of interleukin 1 beta following inhalation of pollution from macrophages and epithelial cells in your lung following PM2.5 exposure. We see this in mice and in humans. And that IL-1 beta we think transforms or trans-differentiates an epithelial cell type into what's called an alveolar type II progenitor cell with stem cell-like properties. Now it only has progenitor-like properties if, in our assays, it harbors an activating mutation in EGFR and KRAS. So in other words, what we think is required is you need an initiator mutation and you need exposure to the pollutant to enable that stem cell to have the capacity to form a cancer. So the question is, where do these mutations come from? What we found is that biopsying normal tissue of people my age and above, sort of 50 to 55 upwards, we can find EGFR and KRAS mutations, activating mutations, in over half of the biopsies we look at, present at low frequencies. We estimate in the lung, based on our assays so far, that we're probably seeing these mutations about one in 600,000 cells. So they're rare, but they're present. So that brings into question the standard classical model of tumor initiation and actually, in fact, resembles and is, in fact, identical to a model from Isaac Berenblum published in 1947 of how tumors are initiated. That is, you need an initiator, which in his experiments was the DMBA, and a promoter, TPA. That promoter could be given anytime up to a year after DMBA exposure, and the mice would develop papillomas, but neither alone was sufficient to induce cancer. We see the same thing in our models. We all harbor, likely as we get older, mutant clones that have a capacity to be oncogenic, but in themselves in tissue are not causing cancer. They're not causing expansion of clones. It's only when we think that mutation is in the right cell at the right time, exposed to pollution, that the cell differentiates into a progenitor cell and a cancer conformance. So this explains the rarity of the disease in that these mutations are rare, and they don't occur in these cells with the capacity to trans-differentiate very often. I think it also explains the increased frequency of lung cancer with age. It takes time for us to accumulate these mutations, and it begins to, I think, add causative functional evidence to the role of pollution in lung cancer. What are the next steps? What I think the next steps are to understand more broadly how other environmental carcinogens cause cancer independent of DNA mutations, perhaps through similar overlapping inflammatory pathways or maybe distinct inflammatory pathways in different tissues. Of course, this opens up the possibility hopefully for a future of molecular cancer prevention, where we may be able to intervene and dampen down these inflammatory pathways for individual benefit in high-risk populations.

Related Videos

Prostate Cancer

Rahul Aggarwal, MD, on Prostate Cancer: Phase III Data on Apalutamide and Androgen Deprivation in Relapsed Disease

Rahul Aggarwal, MD, of the University of California, San Francisco, discusses recent data from the PRESTO study, which showed that apalutamide plus androgen-deprivation therapy (ADT) for 12 months significantly prolonged PSA progression-free survival compared with ADT alone in patients with biochemically recurrent prostate cancer. These results provide support for the intensification of ADT in this setting. (Abstract LBA63).

Lung Cancer
Immunotherapy

Martin Reck, MD, PhD, on NSCLC: New Findings on Cemiplimab, Nivolumab, and Ipilimumab

Martin Reck, MD, PhD, of Germany’s Lung Clinic Grosshansdorf, details two trials that included patients with advanced non–small cell lung cancer: 3-year survival outcomes in the EMPOWER-Lung 1 study of continued cemiplimab-rwlc beyond disease progression with the addition of chemotherapy, and phase III results from the IFCT-1701 trial of nivolumab plus ipilimumab 6-month treatment vs treatment continuation (LBA54 and Abstract 972O).

Breast Cancer

Laurence Buisseret, MD, PhD, on Triple-Negative Breast Cancer: Chemoimmunotherapy With or Without an Anti-CD73 Antibody

Laurence Buisseret, MD, PhD, of Belgium’s Institut Jules Bordet, discusses phase II results from the SYNERGY trial, which tested first-line chemoimmunotherapy of durvalumab, paclitaxel, and carboplatin with or without the anti-CD73 antibody oleclumab in patients with advanced or metastatic triple-negative breast cancer. Although adding oleclumab to durvalumab with chemoimmunotherapy did not increase the clinical benefit rate at week 24, research is ongoing to better understand the mechanisms of response and resistance to this study combination (Abstract LBA17).

Lung Cancer

Tony S.K. Mok, MD, on NSCLC: Review of Recent Data From the SUNRISE and ORIENT-31 Trials

Tony S.K. Mok, MD, of The Chinese University of Hong Kong, discusses two late-breaking abstracts presented at ESMO 2022: the phase II SUNRISE study, which compared sintilimab plus anlotinib vs platinum-based chemotherapy as first-line therapy in patients with metastatic non–small cell lung cancer (NSCLC); and the ORIENT-31 trial, which compared sintilimab with or without IBI305 (a bevacizumab biosimilar) plus chemotherapy in patients with EGFR-mutated nonsquamous NSCLC who experienced disease progression on EGFR tyrosine kinase inhibitors.

Kidney Cancer

Nizar M. Tannir, MD, on RCC: Data on Bempegaldesleukin Plus Nivolumab vs Tyrosine Kinase Inhibitors in Untreated Disease

Nizar M. Tannir, MD, of The University of Texas MD Anderson Cancer Center, discusses phase III findings from the PIVOT-09 study, which compared bempegaldesleukin plus nivolumab with the investigator’s choice of a tyrosine kinase inhibitor (either sunitinib or cabozantinib) in patients with previously untreated advanced renal cell carcinoma (Abstract LBA68).

Advertisement

Advertisement




Advertisement