Advertisement


Smita Bhatia, MD, MPH: Some Clonal Mutations May Predict Therapy-Related Myeloid Neoplasms

2022 ASH Annual Meeting and Exposition

Advertisement

Smita Bhatia, MD, MPH, of the Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, discusses study findings that showed key somatic mutations in the peripheral blood stem cell product increases the risk of developing therapy-related myeloid neoplasms (Abstract 119).



Transcript

Disclaimer: This video transcript has not been proofread or edited and may contain errors.
Therapy related leukemia is a lethal complication of autologous transplantation for Hodgkin lymphoma and non-Hodgkin lymphoma. Now, there are some very well known clinical factors that increase the risk. These include older age at transplantation, pre-transplant exposures to alkylating agents and radiation, and then exposure to total body radiation, and a lower dose of CD34 positive cells that are infused. More recently, there has been increasing attention to what's called clonal hematopoiesis. These are somatic mutations that are present in the peripheral blood, which are in healthy people known to increase the risk of subsequent leukemia. And these have also been studied recently in cancer patients. But there are some gaps in knowledge and these are, what are the factors associated with clonal hematopoiesis? Whether it is just older age, or any treatments increase the risk? And then are there specific mutations that increase the risk of therapy related leukemia? So we addressed this gap in about 1,328 patients with lymphoma, where we had cryopreserved peripheral blood stem cells. We looked at specific mutations and found that they were present in 33% of our survivors. And one third had multiple mutations, two thirds had a single mutation. And we found that there was a clear association between multiple mutations and therapy related leukemia, not with single mutations. So that was a novel finding for us. Going forward beyond that, we also found that Hodgkin lymphoma patients were at a higher risk of therapy related leukemia, as were males. And what we did was then we dug in deeper and found in males PPM1D increased the risk of therapy related leukemia. While in females, there was no association within these clonal hematopoiesis and therapy related leukemia. When we look at Hodgkin lymphoma and non-Hodgkin lymphoma patients, it's primarily TP53 mutations which increase the risk. Coming back to specific mutations, we find that TP53, any TP53 mutations, confer the highest risk. This is followed by any PPM1D mutations, while presence of DNMT3A mutations alone, without any PPM1D or TP53 mutations, don't confer any risk at all. Presence of single or multiple mutations are associated with non relapse mortality, not with relapse related mortality. So in conclusion, what we find is that older age and exposure to therapy related factors such as alkylating agents increase the risk of clonal hematopoiesis. And then amongst the patients who have clonal hematopoiesis, it's the male sex, Hodgkin lymphoma and presence of multiple mutations that increase the risk. And also the fact that PPM1D and TP53 are the major driving forces here. Where do we want to go next? We need to see how these key mutations interact with hematopoietic stressors and use this information to further our understanding of the pathogenesis of therapy related leukemia, and also to develop predictors that help us understand who's at risk for therapy related leukemia.

Related Videos

Lymphoma
Immunotherapy

Tycel J. Phillips, MD, on Mantle Cell Lymphoma: New Findings on Glofitamab Monotherapy

Tycel J. Phillips, MD, of the City of Hope National Medical Center, discusses data that showed fixed-duration glofitamab monotherapy induced high and durable complete response rates in patients with mantle cell lymphoma (MCL) who received obinutuzumab pretreatment. This is one of the largest data sets and longest follow-ups reported with a CD20/CD3 bispecific monoclonal antibody for patients with relapsed or refractory MCL (Abstract 74).

Leukemia
Immunotherapy

Eunice S. Wang, MD, on AML: Gemtuzumab Ozogamicin Plus Standard Induction Chemotherapy Improves Outcomes

Eunice S. Wang, MD, of Roswell Park Comprehensive Cancer Center, discusses the outcomes of patients newly diagnosed with acute myeloid leukemia (AML) who were treated with cytarabine plus daunorubicin plus gemtuzumab ozogamicin (GO). These patients experienced higher rates of measurable residual disease–negative complete remission and complete remission with incomplete count recovery, compared to those treated with cytarabine plus idarubicin daunorubicin alone. Although adding GO was not associated with improved overall survival, longer follow-up is warranted to determine an absolute survival advantage of this regimen (Abstract 58).

Lymphoma

Alex F. Herrera, MD, on Previously Untreated DLBCL: Circulation Tumor DNA and Risk Profiling

Alex F. Herrera, MD, of the City of Hope National Medical Center, discusses results from the POLARIX study, which showed that circulating tumor DNA (ctDNA) analysis has prognostic value for patients with previously untreated diffuse large B-cell lymphoma. Patients who did not achieve 2.5 or greater log-fold change and/or did not have ctDNA clearance following one cycle of polatuzumab vedotin along with rituximab, cyclophosphamide, doxorubicin, and prednisone had inferior outcomes than those who did. Early changes in ctDNA levels may be of use in risk-adapted trial designs to identify patients in need of alternative treatment. (Abstract 542).

Lymphoma

Kathryn R. Tringale, MD, on Primary CNS Lymphoma: Initial Treatment Response in More Than 500 Patients

Kathryn R. Tringale, MD, of Memorial Sloan Kettering Cancer Center, discusses an assessment of 559 patients with primary central nervous system (CNS) lymphoma and the factors associated with consolidation therapy selection, outcomes after consolidation therapy accounting for patient factors, and patterns of disease failure. The initial treatment response was prognostic and predictive of relapse patterns (Abstract 557).

Multiple Myeloma
Genomics/Genetics
Immunotherapy

Jiye Liu, PhD, on Multiple Myeloma: Genome-Wide CRISPR-Cas9 Screening Identifies KDM6A as a Modulator of Daratumumab Sensitivity

Jiye Liu, PhD, of Dana-Farber Cancer Institute, discusses study findings that demonstrate KDM6A regulates CD38 and CD48 expression in multiple myeloma. Dr. Liu’s team validated combination treatment with an FDA-approved EZH2 inhibitor plus daratumumab, which can overcome daratumumab resistance in preclinical multiple myeloma models, providing the rationale for combination clinical trials to improve patient outcome (Abstract 148).

Advertisement

Advertisement




Advertisement