Francesco Maura, MD, on Genomic Determinants of Resistance in Newly Diagnosed Multiple Myeloma Treated With Targeted Immunotherapy

2022 ASH Annual Meeting and Exposition


Francesco Maura, MD, of the University of Miami, Sylvester Comprehensive Cancer Center, discusses his team’s findings in which they defined a comprehensive catalogue of genomic determinants of response to DKRd (carfilzomib, lenalidomide, dexamethasone) in newly diagnosed multiple myeloma. The researchers have identified a number of new genomic alterations that explain resistance to the agents currently used in combination regimens (Abstract 470).



Disclaimer: This video transcript has not been proofread or edited and may contain errors.
The study was, the purpose was to identify mechanism or resistance to a combination of drugs called quadruplets with daratumumab, carfilzomib, Revlimid and dexamethasone for newly diagnosed multiple myeloma. The study was published two years ago by Ola Landgren [inaudible 00:00:21] Oncology as a clinical trial. This study is the correlative based on the genomics, so we sequence for genome sequencing of all the available samples. The main result is that we discover several known and new genomic features associated with poor or worse outcome and failure to achieve sustainable negativity. These features tend to cocoon together. So what we identify is a complex network that require more cases to be really deciphered. But that's an important step because it highlights how the technology we use that is whole genome sequencing is probably the way to go to re-understand the DNA based mechanism of resistance for multiple myeloma. But the next steps are in expanding the sample size, working with the community with additional trials where the quadruplets combination with daratumumab plus bortezomib inhibitor plus immunomodulatory agent and corticosteroids were used for newly diagnosed multiple myeloma patients. Try to see also if the same mechanism are involved in a relapse settings because patients get also these drugs in a relapse setting where the disease transform or evolve after previous therapy. And using all this information, once we have a large number of cases, we can of course develop prediction to identify patients that can benefit and patients where they cannot benefit from these regimens. And so for the one that don't, we can identify alternative strategies.

Related Videos

Hematologic Malignancies

Joseph Schroers-Martin, MD, on Posttransplant Lymphoproliferative Disorders: Tumor Microenvironment Determinants of Immunotherapy Response

Joseph Schroers-Martin, MD, of Stanford University, discusses immunogenomic features reflecting divergent biology in posttransplant lymphoproliferative disorders (PTLD). These include evidence of mismatch repair defects in Epstein-Barr virus–positive PTLD, tumor microenvironment depletion, and MYC pathway enrichment in certain patients (Abstract 72).


Andrew Matthews, MD, on AML: Real-World Effectiveness of 7 + 3 Intensive Chemotherapy vs Venetoclax and a Hypomethylating Agent

Andrew Matthews, MD, of the Abramson Cancer Center, University of Pennsylvania, discusses findings from a large, multicenter study that showed superior outcomes with 7 + 3 chemotherapy (cytarabine continuously for 7 days, along with short infusions of an anthracycline on each of the first 3 days) vs venetoclax in patients with acute myeloid leukemia (AML). In this real-world data set, the 7 + 3 cohort outperformed historical benchmarks in overall survival and early mortality, perhaps reflecting improved later lines of therapy and patient selection. Prospective studies (such as NCT04801797) must confirm the superiority of intensive chemotherapy (Abstract 426).



Paolo F. Caimi, MD, on DLBCL: Outcomes After R-ICE Chemoimmunotherapy

Paolo F. Caimi, MD, of the Taussig Cancer Institute, Cleveland Clinic, discusses new findings showing that patients with diffuse large B-cell lymphoma (DLBCL) who achieve a complete response after salvage therapy with rituximab, ifosfamide, carboplatin, and etoposide (R-ICE) can achieve long-term disease control, regardless of the time to relapse from initial therapy, particularly if they proceed to autologous stem cell transplant (ASCT). These results suggest that second-line chemotherapy followed by ASCT and/or CAR T-cell therapy for chemosensitive and chemorefractory patients may maximize patient outcomes, regardless of time to relapse (Abstract 156).

Multiple Myeloma

Jiye Liu, PhD, on Multiple Myeloma: Genome-Wide CRISPR-Cas9 Screening Identifies KDM6A as a Modulator of Daratumumab Sensitivity

Jiye Liu, PhD, of Dana-Farber Cancer Institute, discusses study findings that demonstrate KDM6A regulates CD38 and CD48 expression in multiple myeloma. Dr. Liu’s team validated combination treatment with an FDA-approved EZH2 inhibitor plus daratumumab, which can overcome daratumumab resistance in preclinical multiple myeloma models, providing the rationale for combination clinical trials to improve patient outcome (Abstract 148).


Kathryn R. Tringale, MD, on Primary CNS Lymphoma: Initial Treatment Response in More Than 500 Patients

Kathryn R. Tringale, MD, of Memorial Sloan Kettering Cancer Center, discusses an assessment of 559 patients with primary central nervous system (CNS) lymphoma and the factors associated with consolidation therapy selection, outcomes after consolidation therapy accounting for patient factors, and patterns of disease failure. The initial treatment response was prognostic and predictive of relapse patterns (Abstract 557).