Advertisement


Jiye Liu, PhD, on Multiple Myeloma: Genome-Wide CRISPR-Cas9 Screening Identifies KDM6A as a Modulator of Daratumumab Sensitivity

2022 ASH Annual Meeting and Exposition

Advertisement

Jiye Liu, PhD, of Dana-Farber Cancer Institute, discusses study findings that demonstrate KDM6A regulates CD38 and CD48 expression in multiple myeloma. Dr. Liu’s team validated combination treatment with an FDA-approved EZH2 inhibitor plus daratumumab, which can overcome daratumumab resistance in preclinical multiple myeloma models, providing the rationale for combination clinical trials to improve patient outcome (Abstract 148).



Transcript

Disclaimer: This video transcript has not been proofread or edited and may contain errors.
We know that daratumumab is the first in class humanize the monoclonal antibody to target CD38 on myeloma cells. So the daratumumab triggers myeloma cell toxicity through the different molecular mechanisms including ADCC, ADCP and CDC, and the direct killing. And several clinical trials recently using the daratumumab alone and in combination with other agent to treat the newly diagnosed and the relapse, and the refractory myeloma cells then show the high efficacy. However, the relapse of the disease is commonly observed due to the daratumumab resistance. So we are seeking for the molecular mechanism of the daratumumab resistance in our project. We performed the genome-scale CRISPR screening in myeloma cells and find the genes named the KDM6A is most enriched in our daratumumab, positively select the gene list. And we found that the KDM6A is a histone 3 lysine 27 demethylase which activating the gene transcription. Then we found that we knock out the KDM6A in the myeloma cells and can significantly downregulate the CD38 expression level on the myeloma cells. And associated with the increased H3K27me3 level on the CD38 promote area. We found that the KDM-60 knockout cells showed resistance to the DARAmediated ADCC in vitro and the in vivo mass model. Also by analyzing the [inaudible 00:01:55] in the KDM-60 knockout cells, we found that the KDM-60 also regulate CD48 expression, which is thought to be an NK-activating ligand in myeloma cells. So we knock out the CD48 in myeloma cells, attenuate the DARAmediated ADCC. So this data suggests that the KDM6A mediate ADCC not only by regulating CD38, but also modulate NK activity by the CD48 regulation. So how we can overcome the resistance induced by the KDM6A? We know the KDM6A and EZH2 mediate the H3K27me3 level together in the cells and balance the genes transcription in the myeloma cells. So it is challenging to elevate the KDM-60 level in the myeloma patient cells. So we hypothesize that whether we can inhibit EZH2 to restore the CD38 or the CD48 expression level in the myeloma cells. So we used the one that FDA approved, the EZH2 inhibitor, to treat the KDM-60 knockout cells and find the CD38 and the CD48 expression level for restore also enhanced DARAmediated ADCC in these KDM-60 knockout cells. Our funding here identify a novel mechanism underlying the daratumumab sensitivity. This funding provided that the EZH2 inhibitor combined with the daratumumab to overcome the daratumumab resistance and for the translation to the clinical trial and improve the myeloma patient outcome.

Related Videos

Lymphoma

Eva Hoster, PhD, on Mantle Cell Lymphoma: Predictive Value of Minimal Residual Disease on Efficacy of Rituximab Maintenance

Eva Hoster, PhD, of Munich University, discusses results from the European MCL Elderly Trial, which confirmed the strong efficacy of rituximab maintenance in minimal residual disease (MRD)-negative patients with mantle cell lymphoma (MCL) after induction. Omitting maintenance based on MRD-negativity is thus discouraged. Considering the short time to progression, more effective treatment strategies should be explored in MRD-positive patients to improve long-term prognosis (Abstract 544).

Lymphoma

Paolo F. Caimi, MD, on DLBCL: Outcomes After R-ICE Chemoimmunotherapy

Paolo F. Caimi, MD, of the Taussig Cancer Institute, Cleveland Clinic, discusses new findings showing that patients with diffuse large B-cell lymphoma (DLBCL) who achieve a complete response after salvage therapy with rituximab, ifosfamide, carboplatin, and etoposide (R-ICE) can achieve long-term disease control, regardless of the time to relapse from initial therapy, particularly if they proceed to autologous stem cell transplant (ASCT). These results suggest that second-line chemotherapy followed by ASCT and/or CAR T-cell therapy for chemosensitive and chemorefractory patients may maximize patient outcomes, regardless of time to relapse (Abstract 156).

Hematologic Malignancies
Genomics/Genetics

Smita Bhatia, MD, MPH: Some Clonal Mutations May Predict Therapy-Related Myeloid Neoplasms

Smita Bhatia, MD, MPH, of the Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, discusses study findings that showed key somatic mutations in the peripheral blood stem cell product increases the risk of developing therapy-related myeloid neoplasms (Abstract 119).

Leukemia

Andrew Matthews, MD, on AML: Real-World Effectiveness of 7 + 3 Intensive Chemotherapy vs Venetoclax and a Hypomethylating Agent

Andrew Matthews, MD, of the Abramson Cancer Center, University of Pennsylvania, discusses findings from a large, multicenter study that showed superior outcomes with 7 + 3 chemotherapy (cytarabine continuously for 7 days, along with short infusions of an anthracycline on each of the first 3 days) vs venetoclax in patients with acute myeloid leukemia (AML). In this real-world data set, the 7 + 3 cohort outperformed historical benchmarks in overall survival and early mortality, perhaps reflecting improved later lines of therapy and patient selection. Prospective studies (such as NCT04801797) must confirm the superiority of intensive chemotherapy (Abstract 426).

 

Multiple Myeloma
Genomics/Genetics
Immunotherapy

Francesco Maura, MD, on Genomic Determinants of Resistance in Newly Diagnosed Multiple Myeloma Treated With Targeted Immunotherapy

Francesco Maura, MD, of the University of Miami, Sylvester Comprehensive Cancer Center, discusses his team’s findings in which they defined a comprehensive catalogue of genomic determinants of response to DKRd (carfilzomib, lenalidomide, dexamethasone) in newly diagnosed multiple myeloma. The researchers have identified a number of new genomic alterations that explain resistance to the agents currently used in combination regimens (Abstract 470).

 

Advertisement

Advertisement




Advertisement