Advertisement

Study: Gold Nanoparticles Can Help Fight Ovarian Cancer

Advertisement

Key Points

  • Nanoparticles are supposed to kill cells by causing cellular calcium ion levels to increase, but a regulatory protein in the mitochondria of ovarian cancer cells transports the rising calcium into the mitochondria, thus subverting apoptosis.
  • If calcium uptake into the mitochondria is inhibited, sufficient cellular stress builds up, making the gold nanoparticles more effective in destroying cancer cells.

Positively charged gold nanoparticles are usually toxic to cells, but cancer cells somehow manage to avoid nanoparticle toxicity. Mayo Clinic researchers found out why and determined how to make the nanoparticles effective against ovarian cancer cells. The discovery is detailed in the current online issue of the Journal of Biological Chemistry.

"This study identifies a novel mechanism that protects ovarian cancer cells by preventing the cell death, or apoptosis, which should occur when they encounter positively charged nanoparticles," said the senior authors of this study, Priyabrata Mukherjee, PhD, a Mayo Clinic molecular biologist, and Y. S. Prakash, MD, PhD, a Mayo Clinic anesthesiologist and physiologist.

Why Cancer Cells Survived

Gold nanoparticles can have many medical uses, from imaging and aiding diagnoses to delivering therapies. In this case, using a special preparation to put positive ionic charges on the surface, the nanoparticle is intended to act as a targeted destructor of tumor cells while leaving healthy cells alone. The nanoparticles are supposed to kill cells by causing cellular calcium ion levels to increase. But researchers discovered that a regulatory protein in the mitochondria essentially buffers the rising calcium by transporting it into the mitochondria, thus subverting cell death. Cancer cells have an abundance of this transporter and may thus be protected from nanoparticle toxicity.

The research team discovered that if they inhibit calcium uptake into the mitochondria, sufficient cellular stress builds up, making the gold nanoparticles more effective in destroying cancer cells.

The researchers say that understanding how mitochondrial transport mechanisms work will help in the design of targeted therapies against cancer. They called for nanoparticle developers to integrate this new mechanistic knowledge into their processes for designing nanoparticle properties to be used in therapy.

The content in this post has not been reviewed by the American Society of Clinical Oncology, Inc. (ASCO®) and does not necessarily reflect the ideas and opinions of ASCO®.


Advertisement

Advertisement




Advertisement